Acta Cryst. (1992). C48, 2200-2203

Structure of Tris(2,4,6-trimethoxyphenyl)phosphine. Resolution of Space-Group Ambiguity by Solid-State NMR

BY G. NEMETH AND A. A. PINKERTON

Department of Chemistry, University of Toledo, Toledo, Ohio 43606, USA

AND J. A. STOWE AND C. A. OGLE

Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA

(Received 22 November 1991; accepted 15 April 1992)

Abstract. $C_{27}H_{33}O_9P$, $M_r = 532.53$, monoclinic, Pn, a = 8.0903 (4), b = 24.865 (1), c = 13.442 (1) Å, $\beta = 96.79$ (1)°, V = 2685 (1) Å³, Z = 4, $D_x = 1.32$ g cm⁻³, λ (Mo $K\alpha$) = 0.70930 Å, $\mu = 1.5$ cm⁻¹, F(000) = 1128, T = 294 (1) K, R = 0.036 for 3368 unique observed reflections of 8609 total data. The observation of two ³¹P signals in the cross-polarization magic-angle spinning (CP-MAS) NMR spectrum indicates that there are two molecules in the asymmetric unit and thus confirms the choice of space group. The two molecules are related by a pseudo-2₁ operation which leads to all 0k0 with k odd reflections being only weakly observed. The molecules have the characteristic propeller shape of triaryl-phosphines.

Introduction. Tris(2,4,6-trimethoxyphenyl)phosphine (TMPP) has been reported to be an extremely basic and bulky phosphine (Wada & Higashizaki, 1984). Recent reports of the coordination chemistry of TMPP with transition-metal ions have demonstrated a number of different ligating modes: (1) monodentate (Wada & Higashizaki, 1984; Bowmaker, Cotton, Healy, Kildea, Silong, Skelton & White, 1989); (2) bidentate with one methoxy group also bound to the metal (Dunbar, Haefner & Swepston, 1991); (3) tridentate with the incorporation of two methoxy groups into the metal coordination sphere (Dunbar, Haefner & Pence, 1989; Dunbar, Haefner & Burzynski, 1990); (4) tridentate and bridging (Chen & Dunbar, 1991), but in this case the bridging methoxy group has been demethylated. Although the coordination chemistry of TMPP is well developed, there is no report of the structure of the parent phosphine.

0108-2701/92/122200-04\$06.00

Experimental. TMPP was prepared from PCl₃ by a modification of the method in the literature (Wada & Higashizaki, 1984), and crystallized from tetrahydrofuran. Colorless plate, $0.30 \times 0.26 \times 0.18$ mm. mounted on a glass fiber; Enraf-Nonius CAD-4 diffractometer; graphite monochromator; $\omega - 2\theta$ scan technique, backgrounds obtained from analysis of the scan profile (Blessing, Coppens & Becker, 1974); unit-cell constants from the setting angles of 25 reflections in the range $12 < \theta < 14^{\circ}$; empirical absorption correction (from 0.973 to 0.999 on I); maximum $2\theta = 52.0^{\circ}$; 0 < h < 9, -23 < k < 30, -16< l < 16; anisotropic decay (from 0.980 to 1.092 on I); reflection averaging gave $R_{int} = 1.9\%$; 8609 total reflections measured, 4761 unique, 3368 reflections with $F_o^2 > 3.0\sigma(F_o^2)$; solution by direct methods using MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980); refinement by full-matrix least squares, function minimized $\sum w(|F_o| - |F_c|)^2$, weight w defined as $4F_o^2/\sigma^2(F_o^2)$; non-H atoms refined anisotropically, H atoms refined as riding atoms in calculated positions; 665 refined parameters; R = 0.036, wR = 0.050, S = 1.59; largest shift = 0.05σ ; highest peak in final difference map 0.18 (4), lowest peak -0.06 (4) e Å⁻³. Scattering factors for neutral atoms and the values for f'and f'' were taken from International Tables for X-ray Crystallography (1974, Vol. IV); computer programs from MolEN (Fair, 1990).

Final atomic coordinates are reported in Table 1;* selected bond lengths, bond angles and torsion angles in Table 2. Fig. 1 prepared by *ORTEP* (Johnson, 1976). Chemagnetics CMC-200 NMR spectrometer, observation frequency 80.745842 MHz,

© 1992 International Union of Crystallography

^{*} Lists of structure factors, anisotropic thermal parameters, H-atom parameters, all bond lengths and angles and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55400 (46 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CR0412]

Table 1. Positional parameters and equivalent isotropic thermal parameters (Å²) for tris(2,4,6-trimethoxyphenyl)phosphine with e.s.d.'s in parentheses

Table 2. Selected bond distances (Å), bond angles (°) and torsion angles (°)

						A
	$B_{\rm eq}$	$= (8\pi^2/3)\sum_i\sum_j U_j$	$J_{ij}a_i^*a_j^*a_i.a_j.$	B	P1—C1 P1—C7 P1—C13 C1—C2	1.838 (3) 1.846 (4) 1.817 (5) 1.399 (5)
Molecu	le A				C1-C6	1.393 (5)
P1 <i>A</i>	0.000	0.58257 (4)	0.500	3.05 (2)	01 D 1 07	
01A	-0.1103 (4)	0.6845 (1)	0.5475 (2)	3.89 (7)	CI - PI - C/	108.2 (2)
024	0.0928 (4)	0.7029 (1)	0.8903 (2)	4.24 (8)	C7-P1-C13	101.3 (2)
03A 04A	0.2084 (4)	0.5439 (1)	0.7022 (2)	4.16 (7)	P1-C1-C2	114.5 (3)
05 <i>A</i>	0.1006 (5)	0.3033 (1)	0.6060 (2)	4.60 (8)	P1-C1-C6	129.4 (3)
06 <i>A</i>	0.2858 (5)	0.5189 (1)	0.4079 (3)	6.02 (9)	C2-C1-C6	116.0 (3)
07 <i>A</i>	0.3702 (5)	0.6115 (1)	0.5557 (2)	4.83 (8)		
084	0.4345 (6)	0.7027 (2)	0.2433 (3)	8.9 (1)		
CIA	0.0480 (6)	0.6177(1)	0.2972(2) 0.6241(3)	6.7 (1) 2.03 (0)	C7	P1C1C2
C2A	-0.0254 (6)	0.6640 (1)	0.6338 (3)	2.93 (9)	C7—	P1-C1-C6
C3A	-0.0083 (6)	0.6930 (1)	0.7225 (3)	3.39 (9)	C13-	-P1C1C2
C4A C5A	0.0828 (6)	0.6710 (1)	0.8050 (3)	3.15 (9)	CI3-	-PI-CI-C6
C6A	0.1385 (6)	0.5210(1)	0.8020(3) 0.7103(3)	3.21 (9)	Ci	PIC7C12
C7A	0.0690 (6)	0.5118 (1)	0.5090 (3)	2.89 (8)	C13-	-P1-C7-C8
C8A	-0.0332 (6)	0.4778 (2)	0.5576 (3)	3.5 (1)	C13-	-P1C7C12
C104	- 0.0177 (7)	0.4224 (2)	0.5554 (3)	4.1 (1)	CI	PI-CI3-CI4
CILA	0.2005 (7)	0.3998 (2)	0.5010 (3)	4.1 (1)	C7—	PI-C13-C14
C12A	0.1882 (7)	0.4865 (2)	0.4584 (3)	3.8 (1)	C7—	P1-C13-C18
C13A	0.1444 (7)	0.6176 (1)	0.4289 (3)	3.4 (1)	C19-	-01C2C1
C14A	0.3099 (7)	0.6301 (2)	0.4622 (3)	3.8 (1)	C19-	-01 - C2 - C3
CI5A CI6A	0.4131(7) 0.3436(8)	0.6589 (2)	0.4046 (3)	4.6 (1)	C20	-02C4C5
C17A	0.1827 (8)	0.6614 (2)	0.3083(3) 0.2721(3)	5.5 (1)	C21-	-03C6C1
C18A	0.0884 (7)	0.6335 (2)	0.3308 (3)	4.4 (1)	C21-	-03C6C5
C19A	-0.1842 (8)	0.7367 (2)	0.5523 (3)	5.4 (1)	C22-	-04C8C7
C20A	0.1805(7) 0.3225(7)	0.6827 (2)	0.9778 (3)	5.2 (1)	C22-	-040309
C22A	- 0.2693 (8)	0.4723 (2)	0.6476 (4)	7.8 (2)	C23-	-05-C10-C11
C23A	0.1915 (9)	0.3182 (2)	0.4327 (4)	8.1 (2)	C24	-06C12C7
C24A	0.4359 (8)	0.4996 (3)	0.3837 (5)	8.3 (2)	C24	-06
C25A C26A	0.5359 (1)	0.0197(2) 0.7262(3)	0.3936 (4)	6.7 (2) 11 4 (3)	C25-	-07C14C1
C27A	-0.135 (1)	0.6271 (3)	0.1988 (4)	10.4 (2)	C26	-08C16C1
				x - <i>y</i>	C26	-08C16C17
Molecul	e R				C27	-09C18C12
PIR	0 5048 (2)	0.08351 (4)	0.06242.(7)	2.02.(2)	027	0, 010 011
01 <i>B</i>	0.6153 (4)	0.1809 (1)	-0.0138 (2)	4.00 (7)		
O2 <i>B</i>	0.3937 (5)	0.1631 (1)	-0.3631 (2)	6.2 (1)	1 1	c
O3B O4B	0.2886 (4)	0.0324 (1)	-0.1259 (2)	3.99 (7)	decoupler	Irequenc
O5B	0.3693 (6)	- 0.1540 (1)	-0.0261(2) 0.0801(3)	5.35 (8)	time doma	in size 10
O6 <i>B</i>	0.2234 (5)	0.0227 (1)	0.1608 (3)	6.9 (1)		
O7 <i>B</i>	0.1351 (5)	0.1079 (1)	-0.0035 (2)	5.09 (8)	Discussion	From th
088	0.0398 (5)	0.2086 (1)	0.2903 (2)	5.89 (9)		
CIB	0.4582 (6)	0.1059 (1)	-0.0693(2)	4.71 (8)	clear that	t compris
C2 <i>B</i>	0.5275 (6)	0.1547 (1)	- 0.0929 (3)	3.35 (9)	of an <i>n</i>	glide wa
C3B	0.5112 (7)	0.1751 (2)	-0.1902 (3)	4.1 (1)	absences a	nd the 0k
C4B C5B	0.4109 (7)	0.14/4 (2)	- 0.2635 (3)	4.3 (1)	were either	· weak or
C6B	0.3605 (6)	0.0796 (1)	-0.1482(3)	3.9(1)		weak Of
C7 <i>B</i>	0.4432 (6)	0.0118 (1)	0.0646 (3)	3.32 (9)	the space g	group was
C8B	0.5482 (6)	- 0.0240 (2)	0.0211 (3)	3.8 (1)	obtained f	or the str
C98 C108	0.5256 (7)	- 0.0793 (2)	0.0238 (3)	4.3 (1)	poor $(R =$	0.21 um
CIIB	0.2977 (8)	-0.0670(2)	0.0716(3) 0.1182(4)	4.4 (1) 5 1 (1)	Closer and	0.21, um
C12 <i>B</i>	0.3206 (7)	-0.0114 (2)	0.1143 (3)	3.9 (1)	Closer exa	mination
C13B	0.3484 (6)	0.1200 (1)	0.1253 (3)	2.84 (8)	that there	was no s
C14B	0.1860 (6)	0.1309 (2)	0.0869 (3)	3.20 (9)	possible sp	ace group
C16B	0.1341 (6)	0.1794 (2)	0.1380(3) 0.2324(3)	4.3(1)	NMR spec	trum was
C17 <i>B</i>	0.2932 (7)	0.1690 (2)	0.2753 (3)	4.0 (1)	shows two	signals in
C18B	0.3989 (6)	0.1392 (1)	0.2238 (3)	3.4 (1)	snows two	signals in
C19B	0.68/9 (8)	0.2320 (2)	-0.0329 (4)	5.9 (1)	independer	nt molec
C21B	0.1811 (7)	0.2000 (2)	-0.3912(3) -0.2002(3)	0.3 (2) 5.0 (1)	(Davies. D	utremez
C22 <i>B</i>	0.7907 (8)	-0.0340 (2)	-0.0621 (5)	8.5 (2)	structure is	disorder
C23B	0.4823 (9)	-0.1901 (2)	0.0420 (5)	7.9 (2)	to be liter-	
C24B C25B	0.0762 (8)	0.0048 (3)	0.1969 (5)	9.8 (2)	to be likely	
C26B	- 0.1173 (8)	0.2290 (2)	0.2461 (4)	6.8 (2)	tions at hi	gn angle,
C27 <i>B</i>	0.6141 (8)	0.1418 (2)	0.3625 (3)	5.5 (1)	likely to 1	be <i>Pn</i> w

	Molecule A	Molecule B		Molecule A	Molecule B
-CI	1.838 (3)	1.852 (3)	C7—C8	1.398 (6)	1.405 (6)
- C 7	1.846 (4)	1.852 (4)	C7-C12	1.394 (6)	1.385 (7)
-C13	1.817 (5)	1.842 (4)	C13-C14	1.396 (7)	1.381 (6)
C2	1.399 (5)	1.388 (5)	C13-C18	1.400 (5)	1.421 (5)
-C6	1.393 (5)	1.407 (5)			.,
P1C7	108.2 (2)	106.3 (2)	P1-C7-C8	114.6 (3)	115.2 (3)
-P1-C13	101.3 (2)	102.6 (2)	P1C7C12	128.3 (3)	128.2 (3)
-P1C13	106.5 (2)	105.4 (2)	C8C7C12	115.9 (3)	116.0 (3)
-CIC2	114.5 (3)	116.1 (3)	P1-C13-C14	126.2 (3)	126.9 (3)
-CIC6	129.4 (3)	127.8 (3)	P1-C13-C18	118.3 (4)	117.1 (3)
-C1C6	116.0 (3)	116.1 (3)	C14-C13C18	115.5 (4)	116.0 (4)
			Molecule	Molecule	
			A	В	
C7F	PI-CI-C2		- 168.3 (2)	- 166.3 (3)	
C7—F	PI-CI-C6		7.8 (5)	14.0 (5)	
C13—	PI-CI-C2		80.0 (4)	83.3 (4)	
C13—	P1-C1-C6		- 103.9 (4)	- 96.5 (4)	
ClF	P1C7C8		74.9 (3)	72.4 (4)	
C1P	PI-C7-C12		- 118.4 (4)	-116.5 (4)	
C13-	P1-C7-C8	_	- 177.0 (3)	- 179.2 (3)	
C13-	PI - C/ - CI	2	- 10.3 (4)	- 8.0 (4)	
CI-P		4	41.7 (4)	36.9 (4)	
C1P		8	- 139.2 (3)	- 142.9 (3)	
C7_P		4	- 71.3 (4)	- 74.2 (4)	
C/—P		8	107.8 (3)	106.0 (3)	
C19	0 - 2 - 0		- 1/8.3 (4)	- 1/9.0 (4)	
C20	0^{-1}		= 1.2(0)	1.9 (/)	
C20-	02		12(7)	4.2 (6)	
C21-	03-C6-C1		170.4 (4)	1764(4)	
C21	O3C6C5		- 10.3 (6)	- 3.7 (6)	
C22	O4C8C7		172.9 (4)	173.0 (4)	
C22	04C8-C9		- 6.9 (6)	- 8.9 (6)	
C23	05—C10—C	9	168.5 (5)	4.2 (7)	
C23-4	05—C10—C	11	- 13.0 (7)	-173.8 (5)	
C24	06—C12—C	7	159.7 (5)	167.8 (5)	
C24	06—C12—C	11	- 24.6 (7)	- 13.0 (7)	
C25-	07-C14-C	13	177.6 (4)	178.0 (4)	
025-0	U/CI4C	15	- 1.0 (6)	2.0 (6)	
C26(08-016-0	15	- 14.4 (8)	- 11.6 (6)	
C20(17	165.2 (6)	169.7 (4)	
(27-4	09-C18-C	15	- 1/4.6 (5)	- 175.4 (4)	
C2/	J-01J-C	17	4.3 (7)	6.3 (6)	

cy 199.485306 MHz; CP-MAS, 024, contact time 5 ms.

e volume of the unit cell, it was sed four molecules. The presence is evident from the systematic k0, k = odd, reflections (Table 3) absent; hence, a first choice for $P2_1/n$. Although a solution was ructure, the refinement was very reasonable thermal parameters). of the 0k0 reflections suggested screw axis, giving P2/n or Pn as ps. At this point, a ³¹P CP-MAS s obtained (Fig. 2) which clearly dicating that there are either two cules in the asymmetric unit & Pinkerton, 1991) or that the ed. Disorder was not considered the number of observable reflecthus the space group was most likely to be Pn with Z = 4. It is probable that

another polymorph exists for this compound as there is a literature report of a singlet for the ³¹P CP-MAS spectrum (Bowmaker *et al.*, 1989). The structure was thus solved in the non-centrosymmetric space group and cleanly refined. There were only four correlation coefficients greater than 0.6, the maximum being 0.74, thus clearly confirming the choice of space group.

A perspective view of one of the molecules in the asymmetric unit is shown in Fig. 1, the other molecule being essentially identical. The P atoms are pyramidal with the P-C bonds folded back from the lone-pair position. The C-P-C angles are less than ideal tetrahedral with one of the three angles significantly smaller than the other two. A similar observation has been made for triphenylphosphine (Dunne & Orpen, 1991; Daly, 1964) and for the 2,6-dimethoxy analog of the present compound (Livant, Sun & Webb, 1991). The average P-C bond length is 1.84 (1) Å, almost identical to that found in the 2,6-dimethoxy compound, and is one of the longer values for P-C bonds as expected from the steric bulk of the substituents (Dunne, Morris & Orpen, 1991). The characteristic left- or right-handed propeller arrangement (both are present in the unit cell due to the *n* glide) formed by the aromatic groups, implies that the two P-C-C angles at the ipso C atoms are not the same. The average angle syn to the P-atom lone pair is $116 (1)^{\circ}$ compared to a value of 128 (1)° for the anti angle. This difference is attributed to steric interactions of the ortho substituents of the aromatic rings. The ideal threefold symmetry of the molecule is not observed due to different amounts of rotation about the P-C bonds; the dihedral angles between the plane formed by the ipso C atoms and the planes of the phenyl rings range

Fig. 1. ORTEP plot of one of the molecules viewed down the pseudo-threefold axis and including the atomic numbering scheme.

Table 3. 0k0 reflections showing pseudo-screwextinctions

h	k	1	$F_{\rm obs} \times 10$	$F_{\text{calc}} \times 10$	$\sigma(F) \times 10$
0	2	0	706	726	2
0	3	0	85	83	2
Ó	4	Ó	931	936	3
0	5	0	18*	14	7
0	6	0	1481	1461	3
0	7	0	93	97	2
Ó	8	0	670	672	4
Ó	9	0	-63*	39	10
Ō	10	0	944	928	4
Ó	11	0	84	89	3
0	12	0	671	655	5
0	13	0	356	349	5
Ō	14	0	134	124	3
Ó	15	0	39	47	4
Ō	16	Ó	53	51	3
Ō	17	0	174	162	4
0	18	0	94	102	3
0	19	0	- 40*	15	14
0	20	0	225	237	5
0	21	0	63	69	5
0	22	0	- 46*	19	15
0	23	0	- 18*	30	22
0	24	0	119	126	4
0	25	0	78	70	5
0	26	0	125	120	4
0	27	0	15*	76	57
0	28	0	66	62	7
0	29	0	43*	46	10
0	30	0	83	76	5

* Reflection considered unobserved, negative $F_{\rm obs}$ indicates negative measured intensity.

Fig. 2. CP-MAS ³¹P NMR spectrum of TMPP.

from 33.2 (2) to 74.0 (1)°. The phenyl groups are planar and the O atoms of the methoxy groups lie in the same plane, with the methyl groups also tending to lie in this plane (Table 3).

References

BLESSING, R. H., COPPENS, P. & BECKER, P. (1974). J. Appl. Cryst. 7, 488–492.

BOWMAKER, G. A., COTTON, J. D., HEALY, P. C., KILDEA, J. D., SILONG, S. B., SKELTON, B. W. & WHITE, A. H. (1989). *Inorg. Chem.* 28, 1462–1466.

CHEN, S. J. & DUNBAR, K. R. (1991). Inorg. Chem. 30, 2018–2023. DALY, J. J. (1964). J. Chem. Soc. A, pp. 3799–3810.

- DAVIES, J. A., DUTREMEZ, S. & PINKERTON, A. A. (1991). Inorg. Chem. 30, 2380–2387.
- DUNBAR, K. R., HAEFNER, S. C. & BURZYNZKI, D. J. (1990). Organometallics, 9, 1347-1349.
- DUNBAR, K. R., HAEFNER, S. C. & PENCE, L. E. (1989). J. Am. Chem. Soc. 111, 5504-5506.
- DUNBAR, K. R., HAEFNER, S. C. & SWEPSTON, P. N. (1991). J. Chem. Soc. Chem. Commun. pp. 460-462.
- DUNNE, B. J., MORRIS, R. B. & ORPEN, A. G. (1991). J. Chem. Soc. Dalton Trans. pp. 653–661.

- DUNNE, B. J. & ORPEN, A. G. (1991). Acta Cryst. C47, 345-347.
- FAIR, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Users Manual. Enraf-Nonius, Delft, The Netherlands.
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- LIVANT, P., SUN, Y. J. & WEBB, T. R. (1991). Acta Cryst. C47, 1003-1005.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- WADA, M. & HIGASHIZAKI, S. (1984). J. Chem. Soc. Chem. Commun. pp. 482–483.

Acta Cryst. (1992). C48, 2203-2207

Structures of Three Derivatives of 5,12-Methano[2.2.2]paracyclophane*

BY PETER G. JONES

Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, W-3300 Braunschweig, Germany

DIETMAR SCHOMBURG

Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg 1, W-3300 Braunschweig, Germany

AND HENNING HOPF AND VERENA LEHNE

Institut für Organische Chemie der Technischen Universität, Hagenring 30, W-3300 Braunschweig, Germany

(Received 12 November 1991; accepted 10 April 1992)

Abstract. 5,12-Methano[2.2.2]paracyclophan-25-one (1), $C_{25}H_{22}O$, $M_r = 338.4$, monoclinic, $P2_1/c$, a =10.677 (2), b = 26.122 (3), c = 13.053 (2) Å, $\beta =$ V = 3635.7 (10) Å³, Z = 8, $D_r =$ 92.96 (2)°, 1.237 Mg m^{-3} , λ (Cu K α) = 1.54178 Å, $\mu =$ 0.57 mm^{-1} , F(000) = 1440, T = 293 K, R = 0.051 for5400 reflections. There are two independent molecules in the asymmetric unit which differ only in slight relative ring rotations. The approximate threefold symmetry of the parent [2.2.2]paracyclophane is lost on formation of the methano bridge. No disorder of the ethano bridges is observed. endo-5,12-Methano[2.2.2]paracyclophan-25-ol (2), $C_{25}H_{24}O$, M_r = 340.4, monoclinic, Cc, a = 15.714(2), b =31.126 (5), c = 11.476 (2) Å, $\beta = 96.51$ (2)°, V =5577 (3) Å³, Z = 12, $D_x = 1.216$ Mg m⁻³, λ (Mo K α) = 0.71069 Å, $\mu = 0.07$ mm⁻¹, F(000) = 2184, T =293 K, R = 0.071 for 5288 reflections. There are three independent molecules in the asymmetric unit. The

© 1992 International Union of Crystallography

otherwise the molecules are similar in conformation to each other and to compound (1). Two of the molecules are linked by a hydrogen bond of 2.97 Å between the hydroxyl O atoms. *endo*-25-Methyl-5,12methano[2.2.2]paracyclophan-25-ol (3), C₂₆H₂₆O, M_r = 354.5, rhombohedral, R3, a = 23.978 (4), c =8.918 (2) Å (hexagonal axes), V = 4440 (3) Å³, Z = 9, $D_x = 1.193$ Mg m⁻³, λ (Mo K α) = 0.71069 Å, $\mu =$ 0.07 mm⁻¹, F(000) = 1710, T = 293 K, R = 0.034 for 2819 reflections. The molecule exhibits a conformation very similar to molecule 2 of compound (2) and has close to (non-crystallographic) mirror symmetry. Hydrogen bonds of 3.09 Å link the molecules around the threefold axes.

conformation of the seven-membered ring differs but

Introduction. [2.2.2]Paracyclophane was discovered by Baker, McOmie & Norman (1951). Its synthetic yield was markedly improved by Schmidbaur, Hager, Huber & Müller (1988). Its crystal structure was determined by Cohen-Addad, Baret, Chautemps & Pierre (1983). A recent study (Lehne, 1989) of the

^{*} Pentacyclo[14.3.2.2^{7,10}.1^{4,19}.1^{13,17}]pentacosa-1,3,7,9,13,15,-

^{17(25),19(24),22-}nonaene; substituents at C-atom number 18 (IUPAC).